Subscripts

1, 2 components

Registry No. MeOH, 67-56-1; EtOH, 64-17-5; (MeO)₄Si, 681-84-5; (EtO)₄Si, 78-10-4.

Literature Cited

- (1) Kojima, K.; Kato, M. Kagaku Kogaku 1969, 33, 769.
- (2) Kato, M.; Konishi, H.; Hirata, M. J. Chem. Eng. Data 1970, 15, 435, 501.
- (3) Yoshikawa, Y.; Takagi, A.; Kato, M. J. Chem. Eng. Data 1980, 25, 344.
- (4) Timmermans, J. Physico-Chemical Constants of Pure Organic Compounds; Elsevier: New York, 1950; Vol. 1.
- (5) Wilson, G. M. J. Am. Chem. Soc. **1984**, 86, 127. (6) Boublik, T.; Fried, V.; Hala, E. The Vapour Pressu
- Boublik, T.; Fried, V.; Hala, E. The Vapour Pressures of Pure Substances; Elsevier: Amsterdam, 1973.

Received for review July 8, 1988. Accepted November 28, 1988.

Vapor-Liquid Equilibrium of 1,3-Dioxolane Systems

Huey S. Wu and Stanley I. Sandler*

Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716

We report here the vapor-liquid equilibrium of 1,3-dioxolane and of binary mixtures of 1,3-dioxolane separately with cyclohexane at 313.15 and 333.15 K, with heptane at 313.15 and 343.15 K, with water at 318.15 and 343.15 K, with ethanol at 313.15 and 338.15 K, and with chloroform at 308.15 and 323.15 K. These data are correlated with five liquid activity coefficient models using the maximum likelihood parameter estimation method with a correlation for nonideal vapor-phase behavior.

Introduction

Cyclic ethers are frequently used as solvents in chemical industry because of their unique physicochemical nature. Tetrahydrofuran has a single cyclic ether group, 1,4-dioxane has two cyclic ether groups separated by two methylene groups, while 1,3-dioxolane has two cyclic ether groups separated by one methylene group. Vapor-liquid equilibrium (VLE) data have already been published for mixtures of tetrahydrofuran (1, 2)and of 1,4-dioxane (3) with alkanes, water, and chloroform. We measured VLE of mixtures containing 1,3-dioxolane in order to obtain liquid activity coefficients for these mixtures which is of inherent interest and also of use in testing proximity effects in current group contribution activity coefficient models (which will be done elsewhere.) Five binary mixtures were measured, each at two isotherms: the VLE of 1,3-dioxolane with cyclohexane at 313.15 and 333.15 K, with heptane at 313.15 and 343.15 K, with water at 318.15 and 343.15 K, with ethanol at 313.15 and 338.15 K, and with chloroform at 308.15 and 323.15 K.

Experiments

The experimental equipment and operating procedures have been described in detail previously (4). The VLE measurements were done with a Stage-Muller dynamic still. The temperature was measured with a platinum resistance thermometer (Rosemount Model 162N) accurate to 0.02 K with a resolution of 0.001 K. Pressures were measured with an accuracy of 0.02 kPa by using a Wallace-Tiernan Model FA-187 precision mercury manometer. Vapor and liquid equilibrium samples were analyzed by using a Hewlett-Packard Model 5730 gas chromatograph with a Model 3390 integrator, after calibration with gravimetrically prepared samples. The compositions determined in this way are accurate to better than 0.005 in mole fraction. Table I. Pure Component Vapor Pressure of 1,3-Dioxolane $(C_3H_6O_2)$

temp, K	press., kPa	temp, K	press., kPa	
 304.443	18.018	329.590	51.609	
304.460	18.025	333.2 94	5 9 .328	
308.195	21.373	337.050	68.052	
313.343	26.793	340.606	77.295	
317.920	32.478	343.290	84.772	
321.450	37.525	347.540	97.959	
325.525	44,144			

Table II. Antoine Constants Used in This Work

 $\log P(kPa) = A - \frac{B}{T(^{\circ}C) + C}$

component	A	В	С	temp range, °C
1,3-dioxolane	6.23182	1236.70	217.235	30-75
cyclohexane	6.15159	1301.67	233.445	20 - 80
heptane	5.90871	1196.68	208.230	20 - 100
water	7.21358	1739.35	234.100	40-49
water	7.10946	1678.948	228.970	70-79
ethanol	7.16879	1552.60	222.419	30-78
chloroform	5.96288	1106.94	218.552	30-60

In this study 1,3-dioxolane, cyclohexane, heptane, and chloroform were of Gold Label guality from Aldrich Chemical Co. and were used as received. The water used was filtered, distilled, and deionized. Ethanol is 200-proof dehydrated alcohol from U.S. Industrial Chemicals Corp. The vapor pressures of cyclohexane, heptane, chloroform, water, and ethanol agree to within 0.1 kPa with literature values (5). The vapor pressure of 1,3-dioxolane that we measured is slightly different from the one data set reported (5). However, our measured vapor pressure data for 1,3-dioxolane, listed in Table I, are not only better fit with the Antoine equation than the other measurements, but also are in better agreement with the reported normal boiling point (6). Consequently, we believe our measurements to be of high accuracy. The Antoine constants that we determined from our vapor pressure measurements are listed in Table II. The binary isothermal VLE data we measured are listed in Table III. These data satisfy thermodynamic consistency tests (7).

Results and Discussion

We correlated our measured vapor-liquid equilibrium data with five liquid activity coefficient models using the maximum likelihood parameter estimation method, with a nonideal vapor phase correction using second virial coefficients obtained from the correlation of Hayden and O'Connell (β). The second virial coefficients we used are listed in Table IV. The experimental

Table III. Experimental Vapor-Liquid Equili	bria	ľ
---	------	---

, 111. Lap	cimental v	apor-Diquiu	. Liquinivi la			······	····	
P, kPa	<i>x</i> ₁	<i>y</i> ₁	P, kPa	<i>x</i> ₁	<i>y</i> ₁	P, kPa	<i>x</i> ₁	y_1
			1,3-Dioxolane (1)	/Cyclohexan	e (2) at 313.15 K			
24.617	0.0000	0.0000	37.165	0.4550	0.5144	32.095	0.9275	0.7867
25 345	0.0066	0.0309	37 274	0.5365	0.5397	29 955	0.9623	0.8669
07 591	0.0247	0.0000	27 1 47	0.0000	0.5609	20.000	0.0020	0.0000
27.001	0.0347	0.1320	37.147	0.0320	0.5045	20.100	0.9009	0.5433
30.816	0.0862	0.2551	36.985	0.6737	0.5845	27.055	0.9965	0.9783
33.792	0.1660	0.3601	36.400	0.7609	0.6223	26.555	1.0000	1.0000
35.788	0.2649	0.4336	35.485	0.8200	0.6624			
36 740	0.3646	0.4821	34 038	0.8792	0.7160			
00.140	0.0040	0.4021	04.000	0.0102	0.1100			
			1,3-Dioxolane (1)	/Cyclohexan	e (2) at 333.15 K			
51.961	0.0000	0.0000	77.172	0.4357	0.5165	68.705	0.9228	0.8065
53.455	0.0098	0.0373	77.705	0.5255	0.5502	64.832	0.9608	0.8850
57.070	0.0333	0.1133	77.698	0.6064	0.5811	61.541	0.9850	0.9497
63 555	0.0880	0.2455	77 999	0.6822	0.6124	60 120	0.9935	0 9777
CO 197	0.0000	0.2400	76.009	0.0022	0.6510	50.016	1,0000	1.0000
69.187	0.1563	0.3427	76.098	0.7591	0.6510	39.010	1.0000	1.0000
73.488	0.2526	0.4200	74.231	0.8286	0.6969			
75 .94 0	0.3472	0.4757	71.602	0.8826	0.7509			
			1.3-Dioxolane	(1)/Heptane	(2) at 313.15 K			
12.242	0.0000	0.0000	29.162	0.4400	0.6738	30.330	0.7603	0.7580
19 750	0.0748	0 4022	29 515	0.4961	0.6873	30.200	0.8169	0 7788
10.100	0.0140	0.7022	20.010	0.4001	0.0070	00.200	0.0103	0.1100
23.190	0.1348	0.0208	29.722	0.0209	0.09/0	29.940	0.09//	0.8264
26.089	0.2315	0.6017	29.921	0.5633	0.7040	29.275	0.9373	0.8668
26.618	0.2426	0.6090	30.135	0.6266	0.7188	27.500	0.9857	0.9589
27.880	0.3060	0.6415	30 1 2 2	0.6320	0.7203	26.891	0.9951	0.9838
29.157	0.2400	0.6527	20.250	0.6061	0.7225	26.555	1 0000	1 0000
20.107	0.3400	0.0037	30.250	0.0901	0.7525	20.000	1.0000	1.0000
28.963	0.4007	0.6652	30.291	0.7275	0.7501			
			1,3-Dioxolane	(1)/Heptane	(2) at 343.15 K			
40.520	0.0000	0.0000	85.555	0.4065	0.6607	92.865	0.8287	0.8081
42 700	0.0103	0.0560	86.070	0.4183	0.6680	92 173	0.8821	0.8392
42.700	0.0100	0.0000	88.700	0.4000	0.0000	00.700	0.0021	0.0002
60.430	0.1066	0.3812	88.700	0.4983	0.6962	90.790	0.9258	0.8///
65.458	0.1448	0.4473	90.493	0.5731	0.7204	88.690	0.9611	0.9223
68.870	0.1753	0.4918	91.562	0.6332	0.7383	86.618	0.9829	0.9602
73.805	0.2231	0.5408	92.342	0.6820	0.7529	85.012	0.9955	0.9890
82.250	0.3407	0.6293	92.880	0,7609	0.7803	84.387	1.0000	1.0000
021200	0.010.	0.0100						
			1,3-Dioxolane	(1)/Water (2) at 318.15 K			
9.585	0.0000	0.0000	32.110	0.1242	0.7220	36.100	0.8334	0.8103
9.621	0.0001	0.0062	33.750	0.1783	0.7360	35.874	0.8817	0.8341
9.890	0.0007	0.0251	34 548	0.2397	0.7502	35.634	0.9047	0.8572
14 750	0.0116	0.2527	24 925	0.2196	0.7530	25 389	0 9273	0.8766
19.700	0.0110	0.0021	04.000	0.0100	0.7500	04.700	0.0270	0.0100
17.750	0.0183	0.4496	35.252	0.4139	0.7522	34.709	0.9009	0.9122
22.120	0.0316	0.5559	35.553	0.5354	0.7613	32.795	1.0000	1.0000
29.240	0.0791	0.6739	35.894	0.6473	0.7644			
32.100	0.1204	0.7203	36.090	0.7637	0.7888			
			1.0.10	(1) (317-+ ()	$(0) \rightarrow 0.0.1 \text{ fr}$ IZ			
01 100	0.0000	0.0000	1,3-Dioxolane	(1)/water (1)	2) at 343.15 K 0.6109	04 959	0.7800	0 7542
31.166	0.0000	0.0000	77.911	0.0941	0.6198	94.000	0.7809	0.7545
32.400	0.0009	0.0188	80.402	0.1008	0.6338	94.425	0.8338	0.7781
35.080	0.0024	0.0557	85.080	0.1468	0.6628	90.985	0.9375	0.8751
38.890	0.0063	0.1443	87.955	0.1891	0.6786	88.430	0.9630	0.9238
43 810	0.0101	0.2136	89 878	0.2369	0.6803	86 167	0.9845	0.9674
10.010	0.0145	0 2015	00.010	0 4090	0.6989	85 525	0.0010	0 0750
43.0/0	0.0140	0.3015	92.902 00 F00	0.4029	0.0303	00.000	0.0000	0.9709
28.190	0.0205	0.4257	93.560	0.4609	0.7034	85.030	0.9912	0.9836
67.520	0.0406	0.5088	94.285	0.5306	0.7132	84.387	1.0000	1.0000
71.480	0.0542	0.5467	94.462	0.6066	0.7218			
72.550	0.0607	0.5576	94.942	0.7225	0.7369			
				(1) (134)	(0) -+ 010 17 IZ			
17.075	0.0000	0.0000	1,3-Dioxolane	(1)/Ethanol	(2) at 313.15 K	00.000	0 7001	0 7400
17.877	0.0000	0.0000	25.532	0.1520	0.3561	29.960	0.7901	0.7406
18.390	0.0058	0.0269	27.240	0.2309	0.4411	29.350	0.8680	0.8086
19.495	0.0201	0.0826	28.377	0.3079	0.4948	28.430	0.9318	0.8840
21 275	0.0468	0 1731	29.236	0.4017	0.5417	27,623	0.9684	0.9388
22 220	0.0400	0.9596	90.270	0.5179	0 5982	26 061	0 9870	0 9747
20.209	0.0007	0.2000	29.010	0.0172	0.0002	20.904	1.0000	1 0000
24.302	0.1123	0.3066	30.178	0.6136	0.6410	26.555	1.0000	1.0000
23.420	0.0889	0.2707	30.150	0.7015	0.0003			
			1,3-Dioxolane	(1)/Ethanol	(2) at 338.15 K			
58,468	0.0000	0.0000	78.003	0.2618	0.3960	78,110	0.8736	0.8067
50 769	0.0106	0.0049	60 U36	0 2240	0.4468	75 210	0 9327	0 2210
39.700	0.0106	0.0348	01.000	0.3349	0.4400	19:919	0.3321	0.0019
61.570	0.0226	0.0695	81.391	0.4093	0.4886	12.870	0.9719	0.9466
64.070	0.0419	0.1193	82.651	0.5606	0.5732	71.382	0.9902	0.9810
68.260	0.0847	0.2014	82.539	0.6404	0.6173	70.795	1.0000	1.0000
72.085	0.1356	0.2734	81 843	0.7228	0.6707			
75 410	0.1050	0.0000	60 1020	0 0007	0.7295			
10.410	0.1202	0.0000	00.000	0.0007	0.1040			

Table III (Con	tinued)							
P, kPa	x ₁	<i>y</i> ₁	P, kPa	x ₁	<i>y</i> ₁	P, kPa	<i>x</i> ₁	<i>y</i> ₁
			1,3-Dioxolane (1)/Chloroform	n (2) at 308.15 K			
39.544	0.0000	0.0000	27.241	0.3799	0.2364	21.545	0.8872	0.8799
39.373	0.0067	0.0022	25.082	0.4684	0.3386	21.461	0.9354	0.9330
38.635	0.0304	0.0067	23.710	0.5540	0.4526	21.440	0.9724	0.9718
37.155	0.0759	0.0198	23.164	0.6125	0.5322	21.393	0.9929	0.9919
35.021	0.1373	0.0439	22.320	0.6897	0.6375	21.323	1.0000	1.0000
32.496	0.2131	0.0836	21.912	0.7601	0.7303			
29.775	0.2914	0.1457	21.648	0.8273	0.8106			
			1,3-Dioxolane (1)/Chloroforn	n (2) at 323.15 K			
69.261	0.0000	0.0000	49.508	0.3832	0.2485	40.152	0.8876	0.8834
68.700	0.0100	0.0022	46.425	0.4677	0.3499	40.125	0.9377	0.9363
67.449	0.0344	0.0094	44.100	0.5544	0.4610	40.115	0.9727	0.9722
65.074	0.0797	0.0251	42.957	0.6100	0.5365	40.110	0.9919	0.9911
61.570	0.1424	0.0542	41.775	0.6901	0.6421	40.110	1.0000	1.0000
57.511	0.2161	0.0992	41.032	0.7568	0.7271			
53.280	0.2982	0.1631	40.593	0.8251	0.8098			

^a x_1 , liquid mole fraction; y_1 , vapor mole fraction.

Table IV. Second Virial Coefficients and Liquid Molar Volumes^a

component	temp, K	V	B _{ii}	B ₁₂
1,3-dioxolane $(i = 1)$	308.15	79.04	-2046	
	313.15	79.50	-1907	
	318.15	79.97	-1782	
	323.15	80.44	-1670	
	333.15	81.43	-1478	
	338.15	81.94	-1395	
	343.15	82.46	-1320	
cyclohexane (i = 2)	313.15	79.54	-1128	-1024
-	333.15	81.62	-968	-872
heptane $(i = 2)$	313.15	153.33	-2485	-1597
	343.15	159.50	-1876	-1227
ethanol $(i = 2)$	313.15	59.18	-1652	-659
	338.15	61.35	-1121	-549
water $(i = 2)$	318.15	18.20	-1242	-294
	343.15	18.63	-757	-245
chloroform $(i = 2)$	308.15	82.06	-1474	4405
	323.15	83.61	-1251	-2947

^{*a*} V, liquid molar volume (cm³/(g·mol)); B_{ii} , second virial coefficients (cm³/(g·mol)) for pure components; B_{12} , cross second virial coefficients (cm³/(g·mol)) estimated by the method of Hayden and O'Connell.

Figure 1. Vapor-liquid equilibrium of 1,3-dloxolane + cyclohexane at 313.15 and 333.15 K.

data together with the fit of the activity coefficient models which led to the best correlation are plotted in Figures 1-5. The

Figure 2. Vapor-liquid equilibrium of 1,3-dioxolane + heptane at 313.15 and 343.15 K.

Figure 3. Vapor-liquid equilibrium of 1,3-dioxolane + water at 318.15 and 343.15 K.

 Table V. Comparison of Liquid Activity Coefficient

 Models^a

model	temp, K	δP, kPa	δy_1
1,3-Dic	\mathbf{x} olane (1) + (Cvclohexane (2)
Margules	313.15	0.190	0.0049
Van Laar	313.15	0.186	0.0047
Wilson	313.15	0.066	0.0027
NRTL	313.15	0.155	0.0042
UNIQUAC	313.15	0.172	0.0047
UNIFAC	313.15	9.25	0.1140
Margules	333 15	0.287	0.0030
Van Laar	333.15	0.207	0.0029
Wilson	333 15	0.125	0.0016
NRTL	333 15	0.240	0.0010
UNIQUAC	333 15	0.262	0.0026
UNIFAC	333 15	20.39	0.0020
0111110	000.10	20.00	0.1102
1,3-E	Dioxolane (1) +	⊢ Heptane (2)	
Margules	313.15	0.221	0.0078
Van Laar	313.15	0.209	0.0074
Wilson	313.15	0.112	0.0029
NRTL	313.15	0.182	0.0061
UNIQUAC	313.15	0.196	0.0069
UNIFAC	313.15	6.83	0.0735
Margules	343.15	0.474	0.0037
Van Laar	343.15	0.311	0.0023
Wilson	343.15	0.077	0.0022
NRTL	343.15	0.281	0.0022
UNIQUAC	343.15	0.407	0.0053
UNIFAC	343.15	22.01	0.0943
	010120		0.0010
1,3-	Dioxolane (1)	+ Water (2)	
Margules	318.15	1.117	0.0202
Van Laar	318.15	1.080	0.0191
Wilson	318.15	0.304	0.0120
NRTL	318.15	0.803	0.0129
UNIQUAC	318.15	0.483	0.0073
UNIFAC	318.15	11.86	0.2173
Margules	343.15	3.305	0.0187
Van Laar	343.15	3.147	0.0171
Wilson	343.15	0.818	0.0162
NRTL	343.15	2.671	0.0132
UNIQUAC	343.15	1.909	0.0092
UNIFAC	343.15	25.40	0.1836
19.0	Jorolano (1)	Fthanol (9)	
1,0°L Margulas	313 15	-1/9	0.0100
Von Loor	313 15	0.145	0.0100
Wilson	313 15	0.141	0.0100
NRTI	313 15	0.000	0.0000
UNIQUAC	313 15	0.130	0.0000
UNIFAC	313 15	1 59	0.0100
Margules	338 15	0.194	0.0131
Van Laar	338 15	0.116	0.0025
Wilson	338 15	0.110	0.0020
NETL	338 15	0.203	0.0020
UNIOUAC	338 15	0.244	0.0033
UNIFAC	338 15	0.104	0.0025
0101110	000.10	2.21	0.0120
1,3 - Die	oxolane (1) +	Chloroform (2)	
Margules	308.15	0.100	0.0034
Van Laar	308.15	0.126	0.0042
Wilson	308.15	0.131	0.0042
NRTL	308.15	0.123	0.0040
UNIQUAC	308.15	0.127	0.0041
UNIFAC	308.15	2.45	0.0167
Margules	323.15	0.077	0.0023
Van Laar	323.15	0.095	0.0027
Wilson	323.15	0.099	0.0028
NRTL	323.15	0.092	0.0026
UNIQUAC	323.15	0.097	0.0026
UNIFAC	323.15	2.06	0.0136

 $^a\,\delta P,$ average absolute deviation of pressure; $\delta y_1,$ average absolute deviation of vapor mole fraction.

deviations between the experimental results, the correlations of the five activity coefficient models, and interestingly the prediction using the UNIFAC model with parameters reported in the literature (9) are shown in Table V.

Figure 4. Vapor-liquid equilibrium of 1,3-dloxolane + ethanol at 313.15 and 338.15 K.

Figure 5. Vapor-liquid equilibrium of 1,3-dioxolane + chloroform at 308.15 and 323.15 K.

The Wilson model is generally the best for correlating mixtures of 1,3-dioxolane with hydrocarbons and with water. The UNIQUAC model gives the best correlation for 1,3-dioxolane and ethanol mixtures, while the Margules model best correlates the data for 1,3-dioxolane and chloroform mixtures. The predictive UNIFAC model with published interaction parameters gives poor predictions for all the mixtures studied here. This is undoubtedly the result of an interference between the two cyclic ether groups on the same molecule which violates the group contribution assumption.

Registry No. EtOH, 64-17-5; CHCl₃, 67-66-3; H_2O , 7732-18-5; 1,3-dioxolane, 646-06-0; cyclohexane, 110-82-7; heptane, 142-82-5.

Literature Cited

Wu, H. S.; Sandler, S. I. *J. Chem. Eng. Data* **1988**, *33*, 157–162.
 Paul, I. Ph.D Thesis, Technical University of Berlin, 1987.

- (3) Gmehling, J.; Onken, U.; Arlt, W. Vapor Liquid Equilibrium Data Collection; DECHEMA Chemistry Data Series; DECHEMA: Frankfurt, 1977; Vol. 1 (12 parts).
 (4) Eng. R.; Sandler, S. I. J. Chem. Eng. Data 1984, 29, 156–161.
 (5) Boublik, T.; Fried, V.; Hala, E. The Vapor Pressures of Pure Sub-

- stances, 2nd ed.; Elsevier: Amsterdam, 1984. Reddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, Physi-(6) cal Properties and Methods of Purification; Techniques of Chemistry; Wiley: New York, 1986; Vol. II.
- (7) Fredenslund, A.; Gmehling, J.; Rasmussen, P. Vapor -- Liquid Equilibrium

- Using UNIFAC; Elsevier: Amsterdam, 1977. Hayden, J. G.; O'Connell, J. P. Ind. Eng. Chem. Process Des. Dev. 1975, 14, 209–216. Reid, R. C.; Prausnitz, J. M.; Poling, B. E. 4th ed.; McGraw-Hill, New (8)
- (9) York, 1988.

Received for review June 3, 1988. Accepted November 1, 1988. The re-search reported here was supported, in part, by National Science Foundation Grant CBT-8612285 to the University of Delaware.

Vapor-Liquid Equilibria of the Trimethyl Borate (1)-Trichloroethylene (2) System

Gary S. Owensby, Charles A. Plank,* and Walden L. S. Laukhuf

Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292

Vapor-liquid equilibria for the binary system trimethyl borate (1)-trichloroethylene (2) have been measured at 101.325 kPa. Data were shown to approach ideality and could also be reasonably represented by a constant relative volatility $\alpha_{12} = 1.782$.

Isobaric vapor-liquid equilibria for the binary system trimethyl borate (1)-trichloroethylene (2) were measured at 101.325 \pm 0.3 kPa (760 \pm 2 mmHg) in an Altsheler circulation-type still. Details of the Altsheler still can be found in the paper by Altsheler et al. (1). The still contained two thermocouples, one submerged in the boiling liquid and one in the vapor space directly above the boiling liquid. The two copper-constantan thermocouples were tested external to the apparatus at the ice point and 298.15 K. The latter temperature was established by using an NBS thermometer certified to ±0.05 K. The thermocouples were also tested in place while boiling distilled water at 760 \pm 2 mm Hg. These tests in comparison with standard thermocouple emf tables indicated a potentiometerthermocouple combination accuracy of ±(0.005 mV/0.0045 mV/K) or ± 0.11 K over the range. At all times during boiling of pure components, both thermocouples indicated the same temperature; however, when the binary was investigated, the vapor thermocouple sometimes read higher. Maximum variation was +0.2 K. When variations occurred, the liquid temperature was reported. Temperatures are believed to be accurate to approximately ± 0.1 K.

Materials Used

The trimethyl borate was manufactured by the Aldrich Chemical Co. and was received with a nominal purity of 99%. A portion was subjected to simple distillation, and no measurable change in boiling point or refractive index was found. Therefore, the borate was used with no additional purification. The trichloroethylene was purchased from Fisher Scientific Co. at 99.9% purity and was also used as received. Table I shows the properties of these material as compared with literature values.

Methods of Analysis

A Bausch & Lomb precision refractometer along with a carefully prepared calibration curve was used to determine composition of the liquid and condensed vapor phases. The refractometer used a sodium D line as the light source and provided a precision ±0.000 03 RI unit. The prism in the re-

Table I. Physical Properties	s of the Pure Components
Trimet	thyl Borate
boiling point, K (760 mm)	Hg)
lit.	340.15 - 342.15 (2)
	341.62 (3)
measd	341.99
refractive index (298.15 K	.)
lit.	1.35441 (3)
measd	1.354 48
Trichle	proethylene
boiling point, K (760 mm)	Hg)
lit.	360.15 (4)
measd	360.55
refractive index	
lit.	1.4773 (293.15 K) (2)
measd	1.474 18 (298.15 K)
Vapor Pres	ssure Equations
trimethyl borate (5)	
$\ln P^{\circ} = 13.1756$ -	-1357.14/(T-134.33)
trichloroethylene (4)	

 $\ln P^{\circ} = 16.1827 - 3028.13/(T - 43.15)$

fractometer was maintained at a temperature of 298.15 \pm 0.1 K. The calibration curve was established with 20 samples prepared by gravimetric measurements (± 0.00005 g). Reproducibility of these and samples taken from the Altsheler still was at least within ± 0.0005 mole fraction.

Discussion of Results

Activity coefficients were calculated from the experimental data by using the equation

 $y_i\pi$

$$\gamma_{i} = \frac{1}{\Phi x_{i} P_{i}^{\circ}}$$

(1)

where

$$\Phi = \phi_i \exp\left[\frac{1}{RT} \int_{P_i^{\sigma}}^{\pi} v d \right] / \hat{\phi}_i \qquad (2)$$

and Φ , the "correction factor", is the ratio of the fugacity coefficient of the pure component at its vapor pressure to the component in the vapor mixture at the total pressure, multiplied by the Poynting correction. Fugacity coefficients were calculated by the Redlich-Kwong-Soave equation. Values of Φ ranged from 0.99 to 1.02. Values of the activity coefficient calculated in this manner showed a scattering around the value of unity with a maximum deviation of approximately -0.04. The average deviation of γ_1 and γ_2 was ± 0.014 . Because of these